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ABSTRACT

The first order perturbed wave function of helium is written
as a sum of terms due to various electron excitations. The por;ion
of the first order wave function‘due to one-electron excitations
has been determined by several investigators. The portion due to
two-electron excitations with one of the electrons excited to the
2s orbital is determined exactly by solving a differential equation
and evaluating an integral. The contributions of these functions
to the second order energy are computed and found to be in exact
agreement with the energies determined by direct summation of the

spectral expansion.
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DIRECT CALCULATION OF CONTRIBUTIONS TO THE

SECOND ORDER ENERGY OF HELIUM.

1. Introduction

In recent years there have been many attempts to solve funda-
mental quantum mechanical problems by applications of perturbation
theory. TFor many one-electron problems explicit solutions of the
perturbation equations have been obtained. However, such explicit
solutions are impossible when the perturbation involves the two-
particle electron repulsion potential y/qz . vTo overcome this
difficulty a perturbation-variation method has been used extensively.1
However, it is sometimes possible to obtain differential equations,
for certain well defined parts of the perturbed wave function, which
can be solved explicitly.

As an example, we consider the ground state energy of the helium
atom. Treating t/ﬁi as a perturbation, the first order wavé function
and the second order energy are separated into contributions due to
various electronic excitations. The contributions due to one-electron
excitations have been calculated by Several investigators.2 We
calculate the contribution due to two-electron excitations with one

1. For example see the review article by J. 0. Hirschfelder,
W. Byers Brown and S. T. Epstein, in "Advances in Quantum
Chemistry" (edited by P. O. Lowdln, Academic Press, New York,
1964), p. 225 et seq.

2. (a) Cohen and A. Dalgarno, Proc. Phys. Soc. 77, 165 (1961).

M.
(b) J. Linderberg, Phys. Rev., 121, 816 (1961).
(¢) C. S. Sharma, Proc. Phys. Soc. 80, 839 (1962).
(d) C. S. Sharma and C. A. Coulson, Proc. Phys. Soc., 80, 81 (1962).
(e) M. Cohen, Proc. Phys. Soc. 82, 778 (1963).
(f) D. Layzer, Z. Horak, M. N. Lewis and D. P. Thompson,
Ann. Phys. 29, 101 (1964},



of the electrons excited to the 2s orbital. The results are in
. 3 .
complete agreement with the values Scherr™ obtained by direct

summation of the spectral expansion of the second order energy.

2. Theory

The Hamiltonian for a two-electron atom is taken to be

Ho= 214+ -4 - ¢ o5t ]

2.
where the units of length and energy are Q.,/2 and e/aorespectively.

This Hamiltonian can be separated into H/Z‘ = Ho +V/Z uhere
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Treating \/ as a perturbation and taking as the zeroth order

wave function

(4)

P < \Hsm\[{sw = T exp(-6-%)

we obtain a series in powers of I/Z for the ground state energy

3. C. W. Scherr, J. Chem. Phys. 33, 317 (1960).




of the two-electron atom,
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The first order Rayleigh-Schrodinger correction to the zeroth
({})
order wave function, ‘i? , due to the perturbation \V/ , can be

expanded in the eigenfunctions of F*o;

L]'_Jw = Z Zl\/j»k;ls,ls C‘J .
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In Eq. (6) the subscripts j and k denote the hydrogenic orbitals,

i.e. j,k = 1s, 2s, 2p...,
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where bdj& is the appropriate normalization factor, and
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The primed sigma in Eq. (6) indicates that the term with j = k = 1s
is excluded from the expaﬁsion and that each pair, j and k , is
counted only once.

The double sum in Eq. (6) can be written as



tIJ(') = Z Vs,k;ts,ls (#3 3 + Z vls,k,‘ls,ls
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Here 1 represents the contribution of one-electron excitations to
- ¥,
the first order wave function, 2.5 the contribution of two-electron
excitations with one electron in the 2s orbital, and so on.
. 2)
The second order correction to the zeroth order energy, c »

due to the perturbation \/ , is given by

G,“.) - < T(o; v LP(‘)>
=KYIVY, 7 +{POVE o+

€l o+ e+ . (10)

Therefore, to calculate the contributions to the second order energy
from various electronic excitations it is only necessary to find
¥} ‘
explicit expressions for J - This can be done, as will be
illustrated in the next two sections of this paper, by an extension
. 4 .
of a method which Schwartz used to calculate the first order

correction to the one-electron density of the helium atom.

' 1)) @)
3. Calculation of \I)os and e‘ls

A perturbation treatment of the Hartree-Fock approximation of

the ground state energy of helium has been carried out by several
) )
investigatorsz. It is well kpown that \f},s = 'iJHF and
4. C. Schwartz, Ann. Phys. 2, 156 (1959). See also G. G. Hall, L. L.
Jones and D. Rees, Proc. Roy. Soc. 283, 194 (1965).
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The first order wave function, v? , satisfies the differential
equation
(o)

(}40 - €:_(o)) q?(n - (E:”"\V,) ﬁv .

(11)

If we require the total wave function to be real and normalized
t
through first order, then EF also satisfies the orthogonality

condition

< T“’" ?(o)> =0 . (12)

Equations (9) and (11) give

2s (13)

(16‘5- }--I° )( T‘(su + Y(.,+ ) - (v_ E(u) ?‘.”

Multiplying By qtézJand integrating over the configuration space of

eélectron 2, Eq. (13) gives

(€5~ h,) ftl{su) T:;’dﬁ = (\{s;ls(‘) - 607)(}’:(:))

(14)

where
2
ho= -1V -

L
' A (15)

and



\{55 = <L}{(1), \/tf)/.u.; > _ (16)

Defining

()
X/CS(‘) : jt‘ks(z) \fllsdn J

(17)

and evaluating \%;j,s(') , Eq. (14) yields

(e,-h )X, 0= i.é_[_lf (+%) exp-26)]- g_} Yo

(18)

It can be shown from Egs. (9), (1l4) and (17) that

(1)
¥, = X.s") Y + %.5(1) 08 (19)

"
Therefore to obtain an explicit expression for gﬂs it is necessary

to solve Eq. (18).
Equation (18) is easily integrated by quadrature, and the

4
solistion satisfying the orthogonality condition Eq. (12) is

- -

~23 -3% - 34w +5¥;
2 'S 8 €

;{;ga) 2 32

- 3_[1 ~exp(-2%) +_3_Eb-(-1f.)
1 expl N')*TE’G[ P ] 3

-

- -

(20)

where ¥ is Euler's constant.




From Eq. (10) the contribution of one-electron excitation to
the second order energy is

I _J_ ‘L@ni —-_2;.__(:) = -0.1l100O032. ,
EIS -31( [/ 3 2. (21)

The second order energy has been evaluated by the perturbation-
(2)
variation methods: e -0O. '57‘6‘4 An expansion of the first
order wave function in Legendre functions, P(W 2) , leads to
Z u.)

an expansion of the second order energy, e.t . The quantity
Eu.)

o 1is customarily referred to as the radial 11m1t of E s, and

6 ~)_ _ Q)

has the value e = O.|1533|‘W Therefore E—.g gives 70.4 per cent

(v ca.) '
of € and 88.6 per cent of €

W (2
4, Calculation of Ys and ezs__

Multiplying Eq. (13) by L}is(l) and integrating over the

configuration space of electron 2 gives

(€= € Wl + @ Iy = VL0 Ve . )

J

Defining

w
X,_g’) = Sqis“') LI/zs i, (23)

Eq. (22) yields

5. C. W. Scherr and R. E. Knight, Rev. Mod. Phys 35, 436.(1963).
See also E. A.~ Hylleraas and J. Midtdal, Phys. Rev. 103,
829 (1956); 109, 1013 (1958).

6. C. W. Scherr and R. E. Knight, J..Chem. Phys. 40, 1777 (1964).
See also C. Schwartz, Phys. Rev. 126, 1015 (1962).




(1g.s-e_u_h.)xz(su = 4‘(1)/2[(\+3f)exp( r)_/_,_g_q: \Hs‘“?

(24)
Multiplying Eq. (24) by %gj) and integrating over the configuration

space of electron 1 yields the condition

Yw, L, 07 =0 .

(25)
From Eqs. (9) and (23) it can be shown that
()]
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While Eq. (24) cannot be integrated easily by quadrature (see

appendix), a solution containing an infinite series can easily

be obtained and may be written as

L= (Z A r"‘exp 3") +5t_(.2_ $,15; |s,;s q/(')

(27)

where

(28)
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Substituting Eq. (27) into Eq. (25) yields
oo

2Y(m42)l = - 1024 (2)"
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This equation can be rearranged to give

A .- [z + 3 C(3) o]
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and Eih and n satisfy the recursion relation Eq. (31).. The
vardia ~Af +lha dram divaroant anrise in jole] (323) can be evaluated
aLiyu Ul wide wwU QLVETNETIlLe SCraico 4 Se (oo, R oe 2

numerically to give A = 0.i15093374 .

From Eqs. (10) and (26) we have

(30)

(31)

(32)

(33)
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E(‘;)S = 2 %o LI‘/S(z),\/,K“(.) (2.)> 1sz.s 1S, is)
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- -0.004292(03 . (34)

7 .
This is in agreement with the value abtained by Scherr?’ It gives
) Q) 2)
2.7 per cent of € and 3.4 per cent of €g . The sum of E
) |
and €2.$‘ gives 73.1 per cent of the second order energy and 92.0
per cent of the radial limit. This result indicates that the
series expansion of the second order energy converges slowly.
The method used in this report can be extended to other terms
in the expansion of the first order wave function and the second

order energy. However, the differential equations involved in the

treatment become progressively more difficult to solve.
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7. This result may also be obtained from Eqs. (4.1b) and (4.9)
of ref. 2(%).




Appendix

Equation (24) can be written as

(h +e )X = R

(A.1)

where L\ is the one-electron Hamiltonian., A general solution of

this equation can be obtained as a quadrature involving solutions

~of the homogeneous equation. This is most easily done by making

the following transformation

X = (S’E)V"Y' (A.2)
and
X = G(X) exP(‘é) (A.3)
Equation (A.l) now becomes
2
xd G +(p-0d G -G = S0 oo
dx* dx '

where

/2.
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S = X REem exp@
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Uegn= 1f

The homogeneous equation

xdla(x) +(/3-X)£L_C(X) G =o
CT;’- ch

(A.5)

is the confluent hypergeometric differential equation with the

solutions:

M, g% = Z (A X (A.6)
m=o0o (y?hn/n! *

where

(K), = R(R+1) - (AR+m=1) ; (K =1

and
M(&,f,x) ,me
R IINCS & g Wiari) - Fray - ‘P(,eﬂu}
Bz0 7oy 034 '
(B R!

B-2

R-p-
+(p-2)! 7 (* £ +1 )X
Y(:k) R=o (Z‘ﬂ)k £l

(A.7)

8. See for example; Lucy J. Slater, "Handbook of Mathematical
Functions'". (edited by M. Abramowitz and Irene A. Stegun,
National Bureau of Standards, Washington, 1964), Ch. 13.

12
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forﬂ =1,2, **+ and W(OU = r(,%)/r(g() where WOU denotes the

gamma function.

These solutions have the following assymptotic behavior:
X
M(O(;ﬁ/x) ~ & ) X o®
- —al =
U(O‘/F)X) ~ X + O ) X>®

M(ap, x) ~ '+-;SX ) X—=o0

U(O‘;P;x) ~ F(F_') X"'B +9(*a"x) )X‘)O)'&orﬂzl.

K3,

The Wronskian of M(O‘,ﬂ, X) and U(d, B X) is

W = -T x?e”

(A.8)
T

The general solution of Eq. (A.4) can then be written as

(o= 1w Mue,0f fUw g, Sep yF-'exp-4) dy +c, 3
(p) -UW,P,X)%SM(O(IFJ%)S(%) 3#"3)(?(-3),[3 +C;k ’

(A.9)
where C, and C, are arbitrary constants than can be chosen to
satisfy the boundary conditions. However, the integrals in Eq. (A.9)
give rise to double infinite sums in the solution of the inhomogeneous

equation. Therefore, we have obtained a power series solution for Eq. (24).



